Improving boosting performance with a local combination of learners

Efrain Tito Mayhua Lopez, Vanessa Gómez-Verdejo, Aníbal R. Figueiras-Vidal

Research output: Chapter in Book/Report/Conference proceedingConference contributionpeer-review

1 Scopus citations

Abstract

This work explores the possibility of improving the performance of Real Adaboost ensemble classifiers by replacing their standard linear combination of learners by a gating scheme. This more powerful fusion method is defined following the epoch-by-epoch construction of boosting ensembles. Preliminary experimental results support the potential of this new approach.

Original languageEnglish
Title of host publication2010 IEEE World Congress on Computational Intelligence, WCCI 2010 - 2010 International Joint Conference on Neural Networks, IJCNN 2010
DOIs
StatePublished - 2010
Externally publishedYes
Event2010 6th IEEE World Congress on Computational Intelligence, WCCI 2010 - 2010 International Joint Conference on Neural Networks, IJCNN 2010 - Barcelona, Spain
Duration: 18 Jul 201023 Jul 2010

Publication series

NameProceedings of the International Joint Conference on Neural Networks

Conference

Conference2010 6th IEEE World Congress on Computational Intelligence, WCCI 2010 - 2010 International Joint Conference on Neural Networks, IJCNN 2010
Country/TerritorySpain
CityBarcelona
Period18/07/1023/07/10

Fingerprint

Dive into the research topics of 'Improving boosting performance with a local combination of learners'. Together they form a unique fingerprint.

Cite this