Photocatalytic advanced oxidation processes for neutralizing free cyanide in gold processing effluents in arequipa, southern peru

David C. Vuono, Johan Vanneste, Linda A. Figueroa, Vincent Hammer, Fredy N. Aguilar-Huaylla, Aaron Malone, Nicole M. Smith, Pablo A. Garcia-Chevesich, Héctor G. Bolaños-Sosa, Francisco D. Alejo-Zapata, Henry G. Polanco-Cornejo, Christopher Bellona

Research output: Contribution to journalArticlepeer-review

Abstract

Cyanide (CN) from gold processing effluents must be removed to protect human health and the environment. Reducing the use of chemical reagents is desirable for small centralized and decentralized facilities. In this work, we aimed to optimize the use of ultraviolet (UV) radiation coupled with hydrogen peroxide (H2O2) to enhance the rate and extent of CN removal in synthetic and actual gold processing effluents, from one centralized and one decentralized facility in southern Peru. Bench-scale studies conducted using H2O2 and ambient UV showed no significant effects on CN- destruction; however, experiments with higher UV intensity and H2O2 accelerated free CN-degradation. When a 1:1 stoichiometric ratio of CN:H2O2 was tested, the highly concentrated effluent (1 g CN/L) had a slower pseudo first-order rate constant (k = 0.0066 min−1) and took ~5 h longer to reach 99% destruction, compared with the low concentration effluent (100 mg CN/L; k = 0.0306 min−1). Lastly, a TiO2 photocatalyst with low stoichiometric CN-:H2O2 ratios (1:0.1 and 1:0.2), in a compound parabolic solar concentrator, was tested to investigate the degradation of a high concentration effluent (1.28 g CN/L). These results show a significant improvement to degradation rate within a 20 min period, advancing treatment options for mineral processing facilities.

Original languageEnglish
Article number9873
JournalSustainability
Volume13
Issue number17
DOIs
StatePublished - Sep 2021

Bibliographical note

Funding Information:
Funding: This research was funded by the Center for Mining Sustainability, Arequipa, Peru.

Publisher Copyright:
© 2021 by the authors. Licensee MDPI, Basel, Switzerland.

Keywords

  • Advanced oxidation process
  • Arequipa
  • Cyanidation
  • Cyanide
  • Gold mining
  • Hydrogen peroxide
  • Mining water treatment
  • Peru
  • Photocatalyst
  • Titanium dioxide

Fingerprint

Dive into the research topics of 'Photocatalytic advanced oxidation processes for neutralizing free cyanide in gold processing effluents in arequipa, southern peru'. Together they form a unique fingerprint.

Cite this