Small face detection using deep learning on surveillance videos

Rolando J. Cárdenas, Cesar A. Beltrán, Juan Carlos Gutierrez Caceres

Research output: Contribution to journalArticlepeer-review

6 Scopus citations

Abstract

Face detection is one of the essential tasks widely studied in the field of Computer Vision. Several authors have developed different techniques to improve the face detection in images, but these are limited in their application on videos and more if they present low resolution. In this study, we propose a new model for face detection in low-resolution videos based on the morphology of the upper body of people, and the use of Deep Learning (CNN). Our results show an average of 39% accuracy over the Caviar dataset and 32% in the UCSP dataset. Compared with other techniques, our results are greater due they only reach 1% of accuracy.

Original languageEnglish
Pages (from-to)189-194
Number of pages6
JournalInternational Journal of Machine Learning and Computing
Volume9
Issue number2
DOIs
StatePublished - 1 Apr 2019

Bibliographical note

Funding Information:
This research was supported by CIENCIACTIVA, CONCYTEC, and the National University of San Agustin (UNSA). The authors thank all the professors who collaborated in this research.

Publisher Copyright:
© 2019, International Association of Computer Science and Information Technology.

Keywords

  • Deep learning
  • Face detection
  • Low resolution
  • Video

Fingerprint

Dive into the research topics of 'Small face detection using deep learning on surveillance videos'. Together they form a unique fingerprint.

Cite this