Resumen
High-dimensional time series analysis through visual techniques poses many challenges due to the visualization solutions proposed until now for exploratory tasks are not well-oriented to high volume of data. When the data sets grow large, the visual alternatives do not allow for a good association between similar time series. With the aim to increase more alternatives, we introduce a visual analytic approach based on Neighbor-Joining similarity tree. The proposed approach internally consists of five time series dimension reduction techniques widely used, two well-known similarity measures and interaction mechanisms to do exploratory analysis of high-dimensional time series data interactively.
Idioma original | Inglés |
---|---|
Título de la publicación alojada | 2017 IEEE International Symposium on Signal Processing and Information Technology, ISSPIT 2017 |
Editorial | Institute of Electrical and Electronics Engineers Inc. |
Páginas | 325-330 |
Número de páginas | 6 |
ISBN (versión digital) | 9781538646625 |
DOI | |
Estado | Publicada - 18 jun. 2018 |
Publicado de forma externa | Sí |
Evento | 17th IEEE International Symposium on Signal Processing and Information Technology, ISSPIT 2017 - Bilbao, Espana Duración: 18 dic. 2017 → 20 dic. 2017 |
Serie de la publicación
Nombre | 2017 IEEE International Symposium on Signal Processing and Information Technology, ISSPIT 2017 |
---|
Conferencia
Conferencia | 17th IEEE International Symposium on Signal Processing and Information Technology, ISSPIT 2017 |
---|---|
País/Territorio | Espana |
Ciudad | Bilbao |
Período | 18/12/17 → 20/12/17 |
Nota bibliográfica
Publisher Copyright:© 2017 IEEE.