Resumen
This work is focused on the evaluation of physical coffee beans through a model of automatic classification of defects. The model uses a segmentation step that discriminates the background from the coffee bean image with a follow contours algorithm, then a CGLCM is introduced as features extractor and a Support Vector Machine for the classification task, a database of images has been collected with a total of 3367 images, the classification process used twelve categories of defects, the results of classification showed a accuracy of 86%. Finally a set of conclusions and future works are presented.
Idioma original | Inglés |
---|---|
Título de la publicación alojada | Proceedings of the 2014 Latin American Computing Conference, CLEI 2014 |
Editores | Pablo Ezzatti, Andrea Delgado |
Editorial | Institute of Electrical and Electronics Engineers Inc. |
ISBN (versión digital) | 9781479961306 |
DOI | |
Estado | Publicada - 21 nov. 2014 |
Evento | 2014 40th Latin American Computing Conference, CLEI 2014 - Montevideo, Uruguay Duración: 15 set. 2014 → 19 set. 2014 |
Serie de la publicación
Nombre | Proceedings of the 2014 Latin American Computing Conference, CLEI 2014 |
---|
Conferencia
Conferencia | 2014 40th Latin American Computing Conference, CLEI 2014 |
---|---|
País/Territorio | Uruguay |
Ciudad | Montevideo |
Período | 15/09/14 → 19/09/14 |
Nota bibliográfica
Publisher Copyright:© 2014 IEEE.