Chaotic Associative Recalls for Fixed Point Attractor Patterns

Liang Zhao, Juan Carlos Gutierrez Caceres, Harold Szu

Resultado de la investigación: Contribución a una conferenciaArtículorevisión exhaustiva

1 Cita (Scopus)

Resumen

Human perception is a complex nonlinear dynamics. On the one hand it is periodic dynamics and on the other hand it is chaotic. Thus, we wish to propose a hybrid - the spatial chaotic dynamics for the associative recall to retrieve patterns, similar to Walter Freeman's discovery, and the fixed point dynamics for memory storage, similar to Hopfield and Grossberg's discoveries. In this model, each neuron in the network could be a chaotic map, whose phase space is divided into two states: one is periodic dynamic state with period-V, which is used to represent a V-value retrieved pattern; another is chaotic dynamic state. Firstly, patterns are stored in the memory by fixed point learning algorithm. In the retrieving process, all neurons are initially set in the chaotic region. Due to the ergodicity property of chaos, each neuron will approximate the periodic points covered by the chaotic attractor at same instants. When this occurs, the control is activated to drive the dynamic of each neuron to their corresponding stable periodic point. Computer simulations confirm the theoretical prediction.

Idioma originalInglés
Páginas841-845
Número de páginas5
EstadoPublicada - 2003
Publicado de forma externa
EventoInternational Joint Conference on Neural Networks 2003 - Portland, OR, Estados Unidos
Duración: 20 jul. 200324 jul. 2003

Conferencia

ConferenciaInternational Joint Conference on Neural Networks 2003
País/TerritorioEstados Unidos
CiudadPortland, OR
Período20/07/0324/07/03

Huella

Profundice en los temas de investigación de 'Chaotic Associative Recalls for Fixed Point Attractor Patterns'. En conjunto forman una huella única.

Citar esto