Resumen
Common problems in climatological time series data are high dimensionality, correlation between the sequential values and noise due to calibration of meteorological stations influencing dramatically in the quality of clustering, classification, climate pattern finding and data processing. One way to deal with this problem is through feature extraction technique. In order to extract features from large climatological time series data, we propose a feature extraction method based on autoencoder neural network (AUTOE). As a first step, time series is standardized. Then, different architectures of autoencoder is applied on it to reduce dimensionality. Finally, k-means clustering algorithm are used to evaluate them through quality measures. As a result, autoencoder performs well and is competitive with other feature extraction techniques over Synthetic Control Chart Time Series.
Idioma original | Inglés |
---|---|
Título de la publicación alojada | 2017 IEEE Latin American Conference on Computational Intelligence, LA-CCI 2017 - Proceedings |
Editorial | Institute of Electrical and Electronics Engineers Inc. |
Páginas | 1-6 |
Número de páginas | 6 |
ISBN (versión digital) | 9781538637340 |
DOI | |
Estado | Publicada - 7 feb. 2018 |
Evento | 2017 IEEE Latin American Conference on Computational Intelligence, LA-CCI 2017 - Arequipa, Perú Duración: 8 nov. 2017 → 10 nov. 2017 |
Serie de la publicación
Nombre | 2017 IEEE Latin American Conference on Computational Intelligence, LA-CCI 2017 - Proceedings |
---|---|
Volumen | 2017-November |
Conferencia
Conferencia | 2017 IEEE Latin American Conference on Computational Intelligence, LA-CCI 2017 |
---|---|
País/Territorio | Perú |
Ciudad | Arequipa |
Período | 8/11/17 → 10/11/17 |
Nota bibliográfica
Publisher Copyright:© 2017 IEEE.