Detección de patrones de defunción por COVID-19 utilizando técnicas no supervisadas de minería de datos

Producción científica: Contribución a una revistaArtículorevisión exhaustiva

Resumen

Data mining allows the discovery of new and meaningful relationships, patterns, and rules from large data sets, which support better decision-making. In this work, unsupervised data mining techniques are used to identify patterns of deaths registered in Peru due to COVID-19, using the K-means clustering algorithm and Apriori algorithm for association rules. Open data provided by the Ministry of Health (MINSA) of Peru were used, considering the period from January 2021 to April 2022. The phases of data understanding, data preparation, and modeling described in the CRISP-DM methodology were followed for subsequent pattern extraction and analysis of results. The results show an analysis of the cases of death according to the conditions of the patient prior to death, such as hospitalization conditions and vaccination dose. In addition, the highest risk profile for death is obtained in older male adults without vaccination doses. These results may help to have a vision of the current and future impact of the risk of death after infection and the effectiveness of vaccination in the country.

Título traducido de la contribuciónDetection of death patterns by COVID-19 using unsupervised data mining techniques
Idioma originalEspañol
Páginas (desde-hasta)14-26
Número de páginas13
PublicaciónRISTI - Revista Iberica de Sistemas e Tecnologias de Informacao
Volumen2023
N.ºE57
EstadoPublicada - 2023

Nota bibliográfica

Publisher Copyright:
© 2023, Associacao Iberica de Sistemas e Tecnologias de Informacao. All rights reserved.

Palabras clave

  • Apriori algorithm
  • COVID-19
  • K-means
  • association rules
  • clustering
  • data analysis
  • vaccination for COVID-19

Huella

Profundice en los temas de investigación de 'Detección de patrones de defunción por COVID-19 utilizando técnicas no supervisadas de minería de datos'. En conjunto forman una huella única.

Citar esto