Resumen
The use of video cameras for security reasons has increased in recent times. Identify a person with automatic face detection systems have greater importance today; but the low-quality of the videos make it difficult and are still an open problem that many researchers are trying to solve. We propose a novel methodology for face detection on low-resolution videos based on parallel Gunnar Farnebäck optical flow algorithm, Haar Cascades and Local Binary Patterns. Our model does not use illumination normalization or super-resolution techniques, commonly used in literature. The results on the Caviar Database prove a better detection rate compared with OpenCv Library, Dlib C++ Library and Matlab function, which use the known Viola-Jones Haar cascade algorithm and HOGs. Even though these tools not have a number of detections up to 1%, our proposal can detect faces in a rate of 50%.
Idioma original | Inglés |
---|---|
Título de la publicación alojada | ICCDA 2018 - Proceedings of 2018 the 2nd International Conference on Compute and Data Analysis |
Editorial | Association for Computing Machinery |
Páginas | 52-59 |
Número de páginas | 8 |
ISBN (versión digital) | 9781450363594 |
DOI | |
Estado | Publicada - 23 mar. 2018 |
Publicado de forma externa | Sí |
Evento | 2nd International Conference on Compute and Data Analysis, ICCDA 2018 - DeKalb, Estados Unidos Duración: 23 mar. 2018 → 25 mar. 2018 |
Serie de la publicación
Nombre | ACM International Conference Proceeding Series |
---|
Conferencia
Conferencia | 2nd International Conference on Compute and Data Analysis, ICCDA 2018 |
---|---|
País/Territorio | Estados Unidos |
Ciudad | DeKalb |
Período | 23/03/18 → 25/03/18 |
Nota bibliográfica
Publisher Copyright:© 2018 Association for Computing Machinery.