Resumen
In this work, we aim to detect car crash accidents in video. We propose a three-stage framework: The first one is a car detection method using convolutional neural networks, in this case, we used the net You Only Look Once (YOLO); the second stage is a tracker in order to focus each car; then the final stage for each car we use the Violent Flow (ViF) descriptor with a Support Vector Machine (SVM) in order to detect the car crashes. Our proposal is almost in real time with just 0.5 seconds of delay and also we got a 89% accuracy detecting car crashes.
Idioma original | Inglés |
---|---|
Título de la publicación alojada | Proceedings - 2018 44th Latin American Computing Conference, CLEI 2018 |
Editorial | Institute of Electrical and Electronics Engineers Inc. |
Páginas | 632-637 |
Número de páginas | 6 |
ISBN (versión digital) | 9781728104379 |
DOI | |
Estado | Publicada - oct. 2018 |
Evento | 44th Latin American Computing Conference, CLEI 2018 - Sao Paulo, Brasil Duración: 1 oct. 2018 → 5 oct. 2018 |
Serie de la publicación
Nombre | Proceedings - 2018 44th Latin American Computing Conference, CLEI 2018 |
---|
Conferencia
Conferencia | 44th Latin American Computing Conference, CLEI 2018 |
---|---|
País/Territorio | Brasil |
Ciudad | Sao Paulo |
Período | 1/10/18 → 5/10/18 |
Nota bibliográfica
Publisher Copyright:© 2018 IEEE.