Learning fuzzy classification rules from imbalanced datasets using multi-objective evolutionary algorithm

C. Edward Hinojosa, Heloisa A. Camargo, V. Yvan J. Tupac

Resultado de la investigación: Capítulo del libro/informe/acta de congresoContribución a la conferenciarevisión exhaustiva

4 Citas (Scopus)

Resumen

Fuzzy systems have been used to solve different types of problems, for example, classification problems. Genetic algorithms are a type of evolutionary algorithms used to automatically learn or tune components of the fuzzy systems from data. Recently multi-objective evolutionary algorithms have been used for this task, since they can consider multiple conflicting objectives, for example, accuracy and interpretability which are desirable properties of the fuzzy systems. Learning rules from imbalanced datasets is considered a research trend in this area. This work proposes a method to learn fuzzy classification rules from imbalanced datasets using multi-objective genetic algorithms and the iterative rule learning approach. In this approach, a single rule is learnt in each execution of the multi-objective evolutionary algorithm. The proposed method contains two phases: (i) pre-processing, to balance the imbalanced dataset; (ii) iterative fuzzy rule learning using multi-objective evolutionary algorithms. The algorithm uses two objectives: the accuracy and number of conditions of each fuzzy rule; the method proposed here is an extension of a method previously proposed by the authors. The results show that the new proposed method has a good performance. The obtained accuracy and the number of conditions are better than other genetic method used in the comparison analysis.

Idioma originalInglés
Título de la publicación alojada2015 Latin-America Congress on Computational Intelligence, LA-CCI 2015
EditoresMarley M. B. R. Vellasco, Yvan J. Tupac Valdivia, Heitor Silverio Lopes
EditorialInstitute of Electrical and Electronics Engineers Inc.
ISBN (versión digital)9781467384186
DOI
EstadoPublicada - 17 mar. 2016
Evento2nd Latin-America Congress on Computational Intelligence, LA-CCI 2015 - Curitiba, Brasil
Duración: 13 oct. 201516 oct. 2015

Serie de la publicación

Nombre2015 Latin-America Congress on Computational Intelligence, LA-CCI 2015

Conferencia

Conferencia2nd Latin-America Congress on Computational Intelligence, LA-CCI 2015
País/TerritorioBrasil
CiudadCuritiba
Período13/10/1516/10/15

Nota bibliográfica

Publisher Copyright:
© 2015 IEEE.

Huella

Profundice en los temas de investigación de 'Learning fuzzy classification rules from imbalanced datasets using multi-objective evolutionary algorithm'. En conjunto forman una huella única.

Citar esto