Resumen
The Drone is an unmanned aerial vehicle widely used to take pictures and record videos at high altitude, recording information for applications such as video surveillance, to be able to detect cars and people in real time, the main problem is that both the drone as objects are move, this make difficult the track objects with traditional techniques. Faced this problem, the present research proposes the use of convolutional neural network with multidomain learning (MDNet) and camera movement models for the detection and monitoring of cars based on aerial videos. The propouse obtaining very good results in compare with traditional methods, obtaining a 90 % of success in object tracking, which is useful for practical applications.
Idioma original | Inglés |
---|---|
Título de la publicación alojada | 2020 39th International Conference of the Chilean Computer Science Society, SCCC 2020 |
Editorial | IEEE Computer Society |
ISBN (versión digital) | 9781728183282 |
DOI | |
Estado | Publicada - 16 nov. 2020 |
Evento | 39th International Conference of the Chilean Computer Science Society, SCCC 2020 - Coquimbo, Chile Duración: 16 nov. 2020 → 20 nov. 2020 |
Serie de la publicación
Nombre | Proceedings - International Conference of the Chilean Computer Science Society, SCCC |
---|---|
Volumen | 2020-November |
ISSN (versión impresa) | 1522-4902 |
Conferencia
Conferencia | 39th International Conference of the Chilean Computer Science Society, SCCC 2020 |
---|---|
País/Territorio | Chile |
Ciudad | Coquimbo |
Período | 16/11/20 → 20/11/20 |
Nota bibliográfica
Publisher Copyright:© 2020 IEEE.