On semantic solutions for efficient approximate similarity search on large-scale datasets

Alexander Ocsa, Jose Luis Huillca, Cristian José Lopez Del Alamo

Resultado de la investigación: Capítulo del libro/informe/acta de congresoContribución a la conferenciarevisión exhaustiva


Approximate similarity search algorithms based on hashing were proposed to query high-dimensional datasets due to its fast retrieval speed and low storage cost. Recent studies, promote the use of Convolutional Neural Network (CNN) with hashing techniques to improve the search accuracy. However, there are challenges to solve in order to find a practical and efficient solution to index CNN features, such as the need for heavy training process to achieve accurate query results and the critical dependency on data-parameters. Aiming to overcome these issues, we propose a new method for scalable similarity search, i.e., Deep frActal based Hashing (DAsH), by computing the best data-parameters values for optimal sub-space projection exploring the correlations among CNN features attributes using fractal theory. Moreover, inspired by recent advances in CNNs, we use not only activations of lower layers which are more general-purpose but also previous knowledge of the semantic data on the latest CNN layer to improve the search accuracy. Thus, our method produces a better representation of the data space with a less computational cost for a better accuracy. This significant gain in speed and accuracy allows us to evaluate the framework on a large, realistic, and challenging set of datasets.

Idioma originalInglés
Título de la publicación alojadaProgress in Pattern Recognition, Image Analysis, Computer Vision, and Applications - 22nd Iberoamerican Congress, CIARP 2017, Proceedings
EditoresSergio Velastin, Marcelo Mendoza
EditorialSpringer Verlag
Número de páginas8
ISBN (versión impresa)9783319751924
EstadoPublicada - 2018
Publicado de forma externa
Evento22nd Iberoamerican Congress on Pattern Recognition, CIARP 2017 - Valparaiso, Chile
Duración: 7 nov. 201710 nov. 2017

Serie de la publicación

NombreLecture Notes in Computer Science (including subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics)
Volumen10657 LNCS
ISSN (versión impresa)0302-9743
ISSN (versión digital)1611-3349


Conferencia22nd Iberoamerican Congress on Pattern Recognition, CIARP 2017

Nota bibliográfica

Publisher Copyright:
© Springer International Publishing AG, part of Springer Nature 2018.


Profundice en los temas de investigación de 'On semantic solutions for efficient approximate similarity search on large-scale datasets'. En conjunto forman una huella única.

Citar esto