Técnicas de data mining para extraer perfiles comportamiento académico y predecir la deserción universitaria

Resultado de la investigación: Contribución a una revistaArtículorevisión exhaustiva

2 Citas (Scopus)

Resumen

The desertion of university students is a problem to which universities dedicate their efforts; a situation that requires more attention due to the demands of the accreditation processes. This research uses classification techniques, implemented with IBM SPSS Modeler, to predict possible student desertion. The differentiating factor of the proposal is to use indices, which in addition to considering a student’s academic performance, also place it within their cohort. To compare and evaluate the accuracy of the models the confusion matrix is used, the results indicate that the CHAID 1 tree model reaches an accuracy of 90.24%. It concludes that the total performance index is the most influential variable in desertion and that Data Mining Techniques are useful and effective in detecting patterns and predicting students’ academic behavior.

Título traducido de la contribuciónData mining techniques to extract academic behavior profiles and predict university desertion
Idioma originalEspañol
Páginas (desde-hasta)592-604
Número de páginas13
PublicaciónRISTI - Revista Iberica de Sistemas e Tecnologias de Informacao
Volumen2020
N.ºE27
EstadoPublicada - mar. 2020

Nota bibliográfica

Publisher Copyright:
© 2020, Associacao Iberica de Sistemas e Tecnologias de Informacao. All rights reserved.

Palabras clave

  • Confusion matrix
  • Data mining techniques
  • Predictive models
  • University desertion

Huella

Profundice en los temas de investigación de 'Técnicas de data mining para extraer perfiles comportamiento académico y predecir la deserción universitaria'. En conjunto forman una huella única.

Citar esto