Resumen
This paper proposes the reduction of the convergence time on a Convolutional Neural Network (CNN) method for traffic speed prediction, without reducing the performance of speed prediction method. The proposed method contains two procedures: The first one is to convert the traffic network data to images; in this case the speed variable will be transformed. The second step of the procedure presents a modification of the CNN method for speed prediction in which a separable convolution is used to reduce the number of parameters. This separable convolution helps to reducing the convergence time of speed predictions for large-scale transportation network. The proposal is evaluated with real data from the Caltrans Performance Measurement System (PeMS), obtained through sensors. The results show that Separable Convolutional Neural Network (SCNN) reduces convergence time of CNN method without losing the performance of the predictions of traffic speed in a large-scale transportation network.
Idioma original | Inglés |
---|---|
Título de la publicación alojada | Proceedings of the 10th International Conference on Computer Modeling and Simulation, ICCMS 2018 |
Editorial | Association for Computing Machinery |
Páginas | 157-161 |
Número de páginas | 5 |
ISBN (versión digital) | 9781450363396 |
DOI | |
Estado | Publicada - 8 ene. 2018 |
Evento | 10th International Conference on Computer Modeling and Simulation, ICCMS 2018 - Sydney, Australia Duración: 8 ene. 2018 → 10 ene. 2018 |
Serie de la publicación
Nombre | ACM International Conference Proceeding Series |
---|
Conferencia
Conferencia | 10th International Conference on Computer Modeling and Simulation, ICCMS 2018 |
---|---|
País/Territorio | Australia |
Ciudad | Sydney |
Período | 8/01/18 → 10/01/18 |
Nota bibliográfica
Publisher Copyright:© 2018 Association for Computing Machinery.